KLASIFIKASI TINGKAT KEBERHASILAN SURVIVAL RATE (SR) PADA PRODUKSI UDANG VANAME MENGGUNAKAN ALGORITMA NAÏVE BAYES

Authors

  • Ar Razi Prodi Teknik Informatika, Fakultas Teknik, Universitas Malikussaleh
  • Desvina Yulisda Prodi Teknik Informatika, Fakultas Teknik, Universitas Malikussaleh

DOI:

https://doi.org/10.31933/ejpp.v4i2.1080

Keywords:

Algoritma Naïve Bayes, Data Mining, AI

Abstract

Data mining is the process of collecting and processing data with the aim of extracting important information from the data. This process can be done using software that uses mathematical calculations, statistics, or AI. Naive Bayes is the most common classification technique and has a high level of accuracy. Many studies on classification have used the Naive Bayes algorithm. Naive Bayes is a simple probability classification technique used to assume that the explanatory variables are independent. The focus of learning this algorithm is probability estimation. One of the advantages of the naive Bayes algorithm is that the resulting error rate is lower. In addition, this algorithm has a higher level of accuracy and speed when used on larger datasets. This research uses the Naïve Bayes algorithm to classify the Survival Rate (SR) of Vaname shrimp into three classes, namely high, medium and low. The number of sample data used was 200 data which was divided into 2 categories, namely 170 training data and 30 testing data. The variables used in this research are temperature, PH, DO (dissolved oxygen) and salinity. The classification was validated using a confusion matrix and produced an accuracy of 70.4%, precision of 98%, and recall of 79.7%.

References

Utomo, D. P., & Mesran, M. (2020). Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung. JURNAL MEDIA INFORMATIKA BUDIDARMA, 4(2), 437. https://doi.org/10.30865/mib.v4i2.2080

Putra, D., & Wibowo, A. (2020). Prediksi Keputusan Minat Penjurusan Siswa SMA Yadika 5 Menggunakan Algoritma Naïve Bayes. Prosiding Seminar Nasional Riset Dan Information Science (SENARIS), 2, 84–92.

Budi Santosa. (2007). Data Mining : Teknik Pemanfaatan Data Untuk Keperluan Bisnis. Garah Ilmu.

Widhi Saputro, I., & Wulan Sari, B. (2019). Uji Performa Algoritma Naïve Bayes

untuk Prediksi Masa Studi Mahasiswa Naïve Bayes Algorithm Performance Test for Student Study Prediction. Citec Journal, 6(1).

Nurdin, N., Suhendri, M., Afrilia, Y., & Rizal, R. (2021). Klasifikasi Karya Ilmiah (Tugas Akhir) Mahasiswa Menggunakan Metode Naive Bayes Classifier (NBC). Sistemasi, 10(2), 268. https://doi.org/10.32520/stmsi.v10i2.1193

Nurjanah, W. E., Perdana, R. S., & Fauzi, M. A. (2017). Analisis Sentimen Terhadap Tayangan Televisi Berdasarkan Opini Masyarakat pada Media Sosial Twitter menggunakan Metode K-Nearest Neighbor dan Pembobotan Jumlah Retweet. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 1(12), 1750–1757.

Sulistyastuti, I. A. A. (2020). STRATEGI KOMUNIKASI PERSUASIF GOJEK

DALAM MENARIK MINAT PELANGGAN (Studi Kasus Gojek di Wilayah Ponorogo).Skripsi.

Syadid, F. (2019). Analisis Sentimen Komentar Netizen Terhadap Calon Presiden

Indonesia 2019 Dari Twitter Menggunakan Algoritma Term FrequencyInvers Document Frequency (Tf- Idf) Dan Metode Multi Layer Perceptron

(Mlp) Neural Network. Skripsi Universitas Islam Negeri Syarif Hidayatullah

Jakarta, 72.

Wahyudi, R., & Kusumawardana, G. (2021). Analisis Sentimen pada Aplikasi

Grab di Google Play Store Menggunakan Support Vector Machine. Jurnal

Informatika, 8(2), 200–207. https://doi.org/10.31294/ji.v8i2.9681

Downloads

Published

2024-06-01

How to Cite

Ar Razi, & Desvina Yulisda. (2024). KLASIFIKASI TINGKAT KEBERHASILAN SURVIVAL RATE (SR) PADA PRODUKSI UDANG VANAME MENGGUNAKAN ALGORITMA NAÏVE BAYES. Ekasakti Jurnal Penelitian Dan Pengabdian, 4(2), 206–212. https://doi.org/10.31933/ejpp.v4i2.1080