PERAN ISOLAT RHIZOBAKTERIA DAN ZAT PENGHAMBAT TUMBUH DALAM PEMBENTUKAN DAN PERTUMBUHAN AKAR TANAMAN KENTANG
DOI:
https://doi.org/10.31933/ejpp.v1i1.170Keywords:
Coumarin, Isolat, Rhizobakteria, Tanaman kentang, PertumbuhanAbstract
PGPR adalah bakteri hidup bebas yang berada di tanah. Mereka baik secara langsung atau tidak langsung membantu perakaran (Kumar and Sharma 2017). Akar merupakan organ yang sangat penting bagi tanaman, peran akar yang paling utama yaitu dalam pertumbuhan dan perkembangan tanaman. Tujuan untuk mendapatkan interaksi isolat rizobakteria dengan konsentrasi zat penghambat tumbuh coumarin dalam meningkatkan pembentukan umbi dan pertumbuhan tanaman kentang, serta mendapatkan isolat rhizobakteria dan konsentrasi pemberian coumarin yang terbaik dalam pertumbuhan dan pembentukan umbi tanaman kentang.
Penelitian ini mengunakan pola faktorial dalam rancangan acak lengkap dari dua faktor dengan tiga ulangan. Faktor pertama adalah isolat rhizobakteria yaitu tanpa isolat, isolat BT.4.1, isolat BT.4.2, isolat BT.4.3 dan faktor kedua adalah konsentrasi zat penghambat tumbuh coumarin, yaitu konsentrasi coumarin 0, 50, 100 dan 150 mg/l.
Hasil penelitian menunjukan bahwa interaksi pemberian isolat rhizobakteria dan coumarin dapat menekan panjang akar tanaman kentang diperoleh pada isolat BT.4.1 dengan konsentrasi coumarin 50 mg l?¹, sehingga energi yang digunakan bisa untuk pembentukan biji. Sedangkan pemberian coumarin secara tunggal tidak mempengaruhi, tetapi coumarin dapat menekan panjangan akar dan bobot basah akar.
References
Beauregard, P.B., Y. Chai, H. Vlamakis, R. Losick and R. Kolter. 2013. Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences, 110 (17), E1621-E1630.
Bruto, M., C. Prigent-Combaret, D. Muller and Y. Moenne-Loccoz. 2014. Analysis of genes contributing to plant-beneficial functions in Plant Growth-Promoting Rhizobacteria and related Proteobacteria. Scientific Reports, 4, p. 6261.
Carvalhais, Lilia C., Paul G. Dennis, Dayakar V. Badri, Gene W. Tyson, Jorge M. Vivanco, and Peer M. Schenk. 2013. “Activation of the Jasmonic Acid Plant Defence Pathway Alters the Composition of Rhizosphere Bacterial Communities.” PLoS ONE 8(2):1–5.
Chattha, F.A, M. Nisa, M.A. Munawer and S. Kousar. 2016a. Coumarin?Based Heteroaromatics as Plant Growth Regulators. University of the Punjab, Pakistan. DOI: 10.5772/64854.
Chattha, F.A, M. Nisa, M.A. Munawer and S. Kousar. 2016b. 2-Methylquinolin-4(1H)-on-3-acetic acids as Inhibitors of seed germination and early growth of seedlings. International Journal of Agronomy and Agricultural Research (IJAAR) Vol. 9, No. 4, p. 9-15. ISSN: 2223-7054.
Chen, Y., F. Yan, Y. Chai, H. Liu, R. Kolter. and R. Losick.. 2013. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental Microbiology, 15(3), 848-864.
Deka Boruah, H., B. Rabha, N. Saikia and B.S. Kumar. 2003. Fluorescent Pseudomonas influences palisade mesophyll development and spatial root development in Phaseolus vulgaris. Plant and Soil 256: 291–301, 2003.
Fageria. N. K. 2013. The Role of Plant Roots in Crop Production. CRC Press, New York.
Gahoonia, T. S. and N. E. Nielsen. 2004. Root traits as tools for creating phosphorus efficient crop varieties. Plant Soil 260:47–57..
Goodwin, R. H and C. Taves. 1950. The effect of coumarin derivatives on the growth of Avena roots. Amer. Journ. Bot., 3"1: 224-23.
Hossain, M., J. Li, S. Guo and M. Fujit. 2008. Suppressive Effects of Coumarins on Pumpkin Seedling Growth and Glutathione S-Transferase Activity. Journal of Crop Science and Biotechnology. Vol 11 (3) : 187-192.
Huang, X. F., J.M. Chaparro, K.F. Reardon, R. Zhang, Q. Shen and J.M. Vivanco. 2014. Rhizosphere interactions: root exudates, microbes, and microbial communities. Canadian Journal of Botany, 92, 267-275.
Imanparast, F., A. Tobeh, A. Gholipouri, D. Hassanpanah and L. Imanparast. 2013. Coumarin and Jasmonic acid interaction and main effectson twopotato mini-tubers cultivars yield, and yield components gradation. International Journal of Agriculture and Crop Sciences (IJACS). Vol., 5 (16), 1800-1812.
Jacquot, J.P and P. Gadal. 2015. Advances In Botanical Research Plant Microbe Interactions. London. Elsevier. ISBN: 978-0-12-420116-3.
Kai, K., B. Shimizu, M. Mizutani, K. Watanabe and K. Sakata. 2006. Accumulation of coumarins in Arabidopsis thaliana. Phytochemistry. Vol. 67:379-86.
Kecskés, M. L., A. T. M. A. Choudhury, A. V. Casteriano, R. Deaker, R. J. Roughley, L. Lewin, R. Ford, and I. R. Kennedy. 2016. “Effects of Bacterial Inoculant Biofertilizers on Growth, Yield and Nutrition of Rice Australia.” Journal of Plant Nutrition 39(3):377–88.
Kumar, Vijay and Nivedita Sharma. 2017. “Plant Growth Promoting Rhizobacteria as Growth Promoters for Wheat?: A Review.” Agricultural Research & Technology 12(4).
Lakshmanan, V., G. Selvaraj and H.P. Bais. 2014. Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiology, 166, 689-700.
Lupini, A., A. Sorgonà, Anthony, J. Miller and M.R. Abenavoli. 2010. Short-term effects of coumarin along the maize primary root axis. Plant Signaling and Behavior 5:11, 1395-1400.
Lupini, A., F. Araniti, F. Sunseri and M.R. Abenavoli. 2014. Coumarin interacts with auxin polar transport to modify root system architecture in Arabidopsis thaliana. Plant Growth Regul. Springer Science. DOI 10.1007/s10725-014-9893-0.
Majeed, Afshan, M. Kaleem Abbasi, Sohail Hameed, Asma Imran, and Nasir Rahim. 2015. “Isolation and Characterization of Plant Growth-Promoting Rhizobacteria from Wheat Rhizosphere and Their Effect on Plant Growth Promotion.” Frontiers in Microbiology 6(198):1–10.
Martínez-Gil, M., F. Yousef-Coronado and M. Espinosa-Urgel. 2010. LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines bio?lm architecture. Molecular Microbiology, 77, 549-561.
Naqqash, T., S. Hameed, A. Imran, M.K. Hanif, A. Majeed and J. Elsas. 2016. Differential Response of Potato Toward Inoculation with Taxonomically Diverse Plant Growth Promoting Rhizobacteria. Frontiers in Plant Science. 7: 144.
Niro, E., R. Marzaioli, S. Crescenzo, B. Abrosca, S. Castaldi, A. Esposito, A. Fiorentino and F. Rutigliano. 2016. Effects of the allelochemical coumarin on plants and soil microbial community. Soil Biology and Biochemistry. 95. 30-39.
Noulas, Christos, Markus Liedgens, Peter Stamp, Ioannis Alexiou, and Juan M. Herrera. 2010. “Subsoil Root Growth of Field Grown Spring Wheat Genotypes (Triticum Aestivum L.) Differing in Nitrogen Use Efficiency Parameters.” Journal of Plant Nutrition 33(13):1887–1903.
Parnell, J. Jacob, Randy Berka, Hugh A. Young, Joseph M. Sturino, Yaowei Kang, D. M. Barnhart, and Matthew V. Dileo. 2016. “From the Lab to the Farm: An Industrial Perspective of Plant Beneficial Microorganisms.” Frontiers in Plant Science 7(AUG2016):1–12.
Rudrappa, T., K.J. Czymmek, P.W. Paré and H.P. Bais. 2008. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiology, 148, 1547-1556.
Sari, Henny Puspita, Warnita Warnita, and Dan Indra Dwipa. 2019. “Pemberian Rizobakteri Dan Coumarin Pada Pertumbuhan Dan Pembentukan Umbi Tanaman Kentang (Solanum Tuberosum L).” Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy) 47(2):188–95.
Svensson, S.B. 1972. The effect of coumarin on root growth and root histology. Physiol Plantar. 24:446-70.
Terraza, P., A. Villarroya, P. Fourcroy, J. Briat, A. Abadía, F. Gaymard, J. Abadía and A. Fernández. 2016. Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH. Front. Plant Sci. 7:1711.
Tkachenko, O., N. Evseeva,N. Boikova, L. Matora, Burygin, Y. Lobachev and S. Shchyogolev. 2015. Improved potato microclonal reproduction with the plant growth-promoting rhizobacteria Azospirillum. Agronomy for Sustainable Development. Volume 35, Issue 3, pp 1167–1174.
Van Puyvelde, S., L. Cloots, K. Engelen, F. Das, K. Marchal and J. Vanderleyden. 2011. Transcrip to meanalysis of the rhizosphere bacterium Azospirillum brasilen sereveals an extensive auxin response. Microbial Ecology, 61(4), 723-728.
Ziegler, Jörg, Stephan Schmidt, Ranju Chutia, Jens Müller, Christoph Böttcher, Nadine Strehmel, Dierk Scheel, and Steffen Abel. 2016. “Non-Targeted Profiling of Semi-Polar Metabolites in Arabidopsis Root Exudates Uncovers a Role for Coumarin Secretion and Lignification during the Local Response to Phosphate Limitation.” Journal of Experimental Botany 67(5):1421–32.
Downloads
Published
How to Cite
Issue
Section
License
Penulis yang mempublikasikan manuskripnya di jurnal ini menyetujui ketentuan berikut:
- Hak cipta pada setiap artikel adalah milik penulis.
- Penulis mengakui bahwa Ekasakti Jurnal Penelitian & Pegabdian (EJPP) berhak menjadi yang pertama menerbitkan dengan lisensi Creative Commons Attribution 4.0 International (Attribution 4.0 International (CC BY 4.0) .
- Penulis dapat mengirimkan artikel secara terpisah, mengatur distribusi non-eksklusif manuskrip yang telah diterbitkan dalam jurnal ini ke versi lain (misalnya, dikirim ke repositori institusi penulis, publikasi ke dalam buku, dll.), dengan mengakui bahwa manuskrip telah diterbitkan pertama kali di Ekasakti Jurnal Penelitian & Pegabdian (EJPP).